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Creation of photons in an oscillating cavity with two moving mirrors

Diego A. R. Dalvit* and Francisco D. Mazzitelli†

Departamento de Fı´sica J. J. Giambiagi, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires–Ciudad Universitaria,
Pabellón, I, 1428 Buenos Aires, Argentina

~Received 29 October 1998!

We study the creation of photons in a one-dimensional oscillating cavity with two perfectly conducting
moving walls. By means of a conformal transformation, we derive a set of generalized Moore’s equations
whose solution contains the whole information of the radiation field within the cavity. For the case of resonant
oscillations we solve these equations using a renormalization-group procedure that appropriately deals with the
secular behavior present in a naive perturbative approach. We study the time evolution of the energy density
profile and of the number of created photons inside the cavity.@S1050-2947~99!03604-5#

PACS number~s!: 42.50.Lc, 42.50.Dv, 12.20.2m, 03.70.1k
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I. INTRODUCTION

It is well known that in the presence of moving boun
aries the vacuum state of the electromagnetic field may
be stable, which results in the generation of real photo
The generated radiation exerts pressure on the mo
boundaries which can be looked upon as a dissipative fo
that opposes itself to the mechanical motion of the bou
aries. The generation of photons, which is an amazing d
onstration of the existence of quantum vacuum fluctuati
of QED, is referred to in the literature as the dynamical C
simir effect@1# or motion-induced radiation@2#. It goes with-
out saying that it would be very nice to have an experimen
verification of this prediction. Due to the technical difficu
ties involved in the detection of the phenomenon, up to n
no concrete experiment has been carried out, and there
only a few experimental proposals@3,4#. However, feasible
experimental evidence is not out of reach, and therefore
of interest to explore different theoretical models to descr
the process and identify signatures which permit us to dis
guish vacuum radiation from spurious effects.

Research in the field has mainly concentrated on o
dimensional models, which are useful for giving an acco
of the main physical processes participating in the phen
enon ~a small number of works deal with more realist
three-dimensional models@4–6#!. In this work we will also
restrict ourselves to one-dimensional models. Motio
induced effects of vacuum radiation already show up fo
single mirror moving with a nonuniform acceleration
vacuum@7#. Since the amount of radiation generated is ve
small, basically determined by the ratio of the speed of
mirror to the speed of light, much attention has been paid
the study of one-dimensional models for which the effec
enhanced.

A cavity made of two perfectly parallel reflecting mirror
one of which is motionless and the other oscillating with
mechanical frequency equal to a multiple of the fundame
optical resonance frequency of the static cavity, is a th
oughly studied example where such an enhancement t
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place@8–13#. It is typically considered that the cavity is mo
tionless and that at some instant one mirror starts to osci
resonantly with a tiny amplitude. For small times after t
motion starts, one can make a perturbative expansion of
equations of motion of the field in terms of the small amp
tude to find an approximate solution. In this way one c
study the structure of the electromagnetic field inside
cavity, which departs from the standard static Casimir pro
~which is constant over the whole cavity! and develops a
structure of small and broad pulses. The number of moti
induced photons grows quadratically in time, and the sp
trum has an inverted parabolic shape with an upper
quency cutoff given by the mechanical frequency,
maximum being at half that value@4,14#. Similar results are
found in @2# by means of a scattering approach for the rad
tion emitted out of a lossy cavity. However, for long time
these methods are not valid, and new approximation te
niques are required. In@12,15# it is shown that in such a limit
the structure of the electromagnetic field is nontrivial, with
number of pulses equal to the mechanical resonant
quency, whose width decreases exponentially and wh
height increases exponentially with time, in such a way t
the total energy within the cavity grows exponentially at t
expense of the energy given to the system to keep the m
moving. Also, the spectrum does not have an upper
quency cutoff. Through a process of frequency u
conversion, the generated photons contain frequencie
higher-order cavity modes and thus exceed the mechan
frequency. The physical mechanism of such an opti
pumping into the high-frequency region is the Doppler u
shift of the field upon reflection at the mirrors. Similar co
clusions are found for the lossy cavity@16#.

The case of cavities with two moving mirrors has al
been considered recently. In the small time approximati
both for the ideal cavity@17# and for the lossy one@2#, it is
found that the number of motion-induced photons gro
quadratically in time and that the spectrum is once ag
parabolic. In the long time approximation, the lossy cav
has been studied with the scattering approach@16#. Just as in
the case of a single oscillating mirror, it is found that in th
regime there is pulse shaping in the time domain and
quency up-conversion in the spectrum of emitted phot
from the cavity. A striking feature of the spectrum is that
3049 ©1999 The American Physical Society
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photons are emitted at frequencies equal to multiple integ
of the mechanical frequency.

In this work we will consider an ideal cavity with two
mirrors oscillating resonantly at the same frequency, and
will allow for different amplitudes and a possible dephasi
between the mirrors. To investigate the problem, we w
deduce a generalization of Moore’s equation@18# to the
problem of two moving boundaries, whose solution giv
complete information on the electromagnetic field inside
cavity. For the case of resonant harmonic motions, no e
solution exists, and we find an approximate analytic solut
based on a renormalization-group~RG! technique. We have
already applied this method in@15# for the case of a single
oscillating mirror, and just as in that case, the strategy allo
us to find a single solution valid for both short and lo
times. This will allow us to describe precisely the behav
of the energy density and the number of photons for
times.

As we shall see, motion-induced radiation strongly d
pends on the relation among the amplitudes of oscillati
the frequency, and the dephasing. For some relations am
these variables, there is constructive interference and a s
of pulses develops within the cavity that grow exponentia
in time, and frequency up-conversion takes place. For so
other relations, there is destructive interference and henc
vacuum radiation. We also show that our solution is capa
of accounting for other physical behaviors, for which t
peaks grow quadratically rather than exponentially.

The paper is organized as follows. In Sec. II we will i
troduce the generalization of Moore’s equations for a m
ing cavity and we will explain how to calculate the ener
density and the number of motion-induced photons. In S
III the renormalization-group method is described and
plied to the problem of harmonically oscillating walls wit
dephasing. In Sec. IV we study some particular dephasi
which we will call translational and breathing modes. In S
V another motion is considered, which has a qualitativ
different behavior as compared to those of Sec. IV. Finally
Sec. VI we make our conclusions.

II. GENERALIZED MOORE EQUATIONS

We consider a one-dimensional cavity formed by two p
fectly reflecting mirrors, each of which follows a given tr
jectory, sayL(t) for the left mirror andR(t) for the right
one. These two trajectories are predetermined~i.e., are given
data for the problem! and act as time-dependent bounda
conditions for the electromagnetic field inside the cavity. T
field equation for the vector potential takes the form of t
equation for a massless scalar field (2] t

21]x
2)A(x,t)50,1

and the boundary conditions areA„x5L(t),t…5A„x
5R(t),t…50 for all times. If we express the field in terms o
creationak

† and annihilationak operators for photons in th
form

A~x,t !5 (
k51

`

@akck~x,t !1ak
†ck* ~x,t !#, ~1!

1The speed of light is set to unity.
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then the mode functionsck(x,t) must be chosen so as t
satisfy the above boundary conditions.

In the case where only one of the walls moves, say
right one, the modes can be written in terms of a funct
U(t) as

ck~x,t !5
i

A4pk
@e2 ikpU~ t1x!2e2 ikpU~ t2x!#, ~2!

and the boundary condition on the right is met2 provided that
the functionU verifies U„t1R(t)…2U„t2R(t)…52, which
is known as Moore’s equation@18#. The complete solution to
the problem involves finding a solutionU(t) in terms of the
prescribed motionR(t). Moore’s equation can in fact be
deduced by means of a conformal transformation from
original space-time coordinates (t,x) to a new set of coordi-
nates (t̄ ,x̄) in which not only the left mirror but also the righ
one is fixed. This transformation takes the form

t̄ 1 x̄5U~ t1x!, t̄ 2 x̄5U~ t2x!, ~3!

which, after mapping the coordinate of the left mirror
L(t)[0→ x̄L50 and the right one asR(t)→ x̄R51, leads to
Moore’s equation.

Let us now consider the more general case in which b
mirrors move. Evidently, we can also make a similar conf
mal transformation, but now we need two functionsU in-
stead of one. Defining the transformation as

t̄ 1 x̄5G~ t1x!, t̄ 2 x̄5F~ t2x!, ~4!

and mappingL(t) and R(t) as before, we obtain a set o
generalized Moore’s equations

G„t1L~ t !…2F„t2L~ t !…50,
~5!

G„t1R~ t !…2F„t2R~ t !…52,

which, when solved for given motions for the mirrors, allow
us to find the solution for the modes inside the cavity.
deed, the modes can be cast in the form

ck~x,t !5
i

A4pk
@e2 ikpG~ t1x!2e2 ikpF~ t2x!#, ~6!

and they satisfy both the field equation and the bound
conditions.

We shall be interested in studying the space-time pro
of the energy density of the field between the moving wa

^T00~x,t !&5
1

2F K S ]A~x,t !

]t D 2L 1 K S ]A~x,t !

]x D 2L G , ~7!

where the expectation values are taken with respect to
vacuum state. As is well known, this quantity is diverge
and a regularization method is needed to get meaningfu
sults. Using the point-splitting method and introducing a

2The boundary condition on the left~fixed! mirror is automatically
fulfilled by this form for the modes.



-

r-

by
he

o
e
ce
n
r

th

i
ns
o

f
et
th

he

v

nd
e
the
gy
pro-
he

ese
av-
ge
r-
ry

vity
re

e

,

ore

e
om

on

PRA 59 3051CREATION OF PHOTONS IN AN OSCILLATING . . .
vancedu5t1x and retardedv5t2x coordinates, the en
ergy density can be rewritten in terms of the functionsG and
F in the following way@7#:

^T00~u,v !&5
p

4 (
k51

`

k$G8~u!G8~u1 i e!e2 ikp[G~u!2G~u1 i e!]

1F8~v !F8~v1 i e!e2 ikp[F~v !2F~v1 i e!]%, ~8!

with e→01. From here it is straightforward to get the reno
malized version, ^T00(x,t)& ren52 f G(t1x)2 f F(t2x),
where

f G5
1

24pFG-
G8

2
3

2S G9

G D 2

1
p2

2
~G8!2G ,

~9!

f F5
1

24pFF-

F8
2

3

2S F9

F D 2

1
p2

2
~F8!2G .

Suppose that fort,0 both walls were at rest separated
a distanceL and that the field was in its vacuum state. T
solution of the generalized Moore equations is simplyG(t)
5F(t)5t/L and the mode functionsck correspond to posi-
tive frequency modes. If att50 the boundaries begin t
move, it is well known that for some types of motion th
field does not remain in vacuum, but photons are produ
through nonabiabatic processes. A consistent calculatio
the number of created photons through motion-induced
diation requires having a well-defined vacuum state in
future. To this end we consider that at timet5T both walls
come to rest@L(t)50 andR(t)5L for t>T]. The evolved
old vacuum state does not coincide with the vacuum
the future, but rather it contains a number of photo
which can be calculated by means of the Bogoliub
coefficients bnm5(cn

! ,cm
(0))!, where cm

(0)(x,t)
5(pm)21/2sin(mpx/L)e2ipmt/L is the mode function for the
static problem,3 and cn(x,t) is the mode function which
solves the nonstationary problem fort.0 and coincides with
cn

(0)(x,t) for t,0. Writing the mode functions in terms o
the functionsG andF, integrating by parts, and using the s
of Moore’s equations to drop the surface terms, we get
following relation for the Bogoliubov coefficient:

bnm~ t,T!5
1

2
Am

n H E
t/L21

t/L

dx exp$2 ip@nF~Lx!1mx#%

1E
t/L

t/L11

dx exp$2 ip@nG~Lx!1mx#%J ~10!

for times t.T. The number of created photons inside t
cavity after the stopping timeT in the nth mode is given by
Nn(T)5(mubnm(t,T)u2 ~the dependence of the Bogoliubo
coefficient ont is just a phase! and summing overn we get
the total amount of motion-induced photons.

3The inner product is the usual for the Klein-Gordon equati

namely (c,j)52 i *L(t)
R(t)dx@cj̇!2ċj!#.
d
of
a-
e

n
,
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e

III. RENORMALIZATION-GROUP METHOD
FOR MOORE’S EQUATIONS

For resonantly harmonic motions it is not possible to fi
an exact solution to Eqs.~5! and approximation methods ar
compelling. A naive approach is to make perturbations in
amplitude of the oscillation, but it turns out that the strate
is ill-fated, because of the appearance of secular terms
portional to the time which, after a short period, make t
approximation break down. In@15# we have applied a
method inspired in the renormalization group to treat th
singular perturbations for the case of a one-dimensional c
ity with one oscillating mirror. The method has a wide ran
of applications in different fields, especially for studying o
dinary differential equation problems involving bounda
layers, multiple scales, etc.@19#. In the following we shall
extend the method for the case of a one-dimensional ca
whose mirrors oscillate in resonance with the cavity. Mo
specifically, we consider that fort,0 the two mirrors are
motionless and separated by a distanceL, and that att50
they start to move as

L~ t !5eAL sinS qpt

L D[01edL~ t !,

R~ t !5L2eAR sin~f!1eAR sinS qpt

L
1f D[L1edR~ t !,

~11!

for the left and right mirrors, respectively. Heref is a pos-
sible dephasing angle,AL andAR are amplitudes of oscilla-
tion, ande!1 is a small parameter.

Let us first start with the perturbative approximation. W
expand both unknown functionsG(t) and F(t) in terms of
the small parametere and retain first-order terms only
G(t)5G0(t)1eG1(t) and F(t)5F0(t)1eF1(t). Equating
terms of the same order in the set of generalized Mo
equations, we get for the zeroth-order part

G0~ t !2F0~ t !50, ~12!

G0~ t1L!2F0~ t2L!52, ~13!

and for the first-order part

G1~ t !2F1~ t !52u~ t !dL~ t !@G08~ t !1F08~ t !#, ~14!

G1~ t1L!2F1~ t2L!52u~ t !dR~ t !

3@G08~ t1L!1F08~ t2L!#. ~15!

The general solution to Eqs.~12! and ~13! is

G0~ t !5F0~ t !5c1
t

L
1 (

n>1
FAn sinS npt

L D
1Bn cosS npt

L D G , ~16!

where c, An , and Bn are constants determined by th
boundary conditions of the problem. These are obtained fr
the fact that the modesck(x,t) must be positive frequency
modes fort,0, which implies thatG(t)5t/L for 2`<t

,
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<L andF(t)5t/L for 2`<t<0. The different ranges fo
the functionsG and F follow directly from the nonlocal
structure of Moore equations.

Making the shiftt→t2L in Eq. ~14! and replacing the
result in Eq.~15! we get an equation for the first-order co
rection to the functionG, namely

G1~ t1L!2G1~ t2L!

5u~ t2L!dL~ t2L!@G08~ t2L!1F08~ t2L!#

2u~ t !dR~ t !@G08~ t1L!1F08~ t2L!#. ~17!

Since this equation is linear, the solution is of the formG1

5G1
(1)1G1

(2) , where

G1
~1!~ t1L!2G1

~1!~ t2L!5u~ t2L!dL~ t2L!

3@G08~ t2L!1F08~ t2L!#,

~18!

G1
~2!~ t1L!2G1

~2!~ t2L!52u~ t !dR~ t !

3@G08~ t1L!1F08~ t2L!#,

~19!

whose general solutions read

G1
~1!~ t !5

AL

L

t

L
u~ t !sin~qpt/L!

3H 11p (
n>1

n@An cos~npt/L!

2Bn sin~npt/L!#J 1g~1!~ t ! ~20!

for Eq. ~18!, and for Eq.~19! we get

G1
~2!~ t !5

AR

L

t

L
u~ t1L!

3$sin~f!1~21!q11 sin~qpt/L1f!%

3H 11p (
n>1

n@Ancos~npt/L!

2Bn sin~npt/L!#J 1g~2!~ t !, ~21!

whereg(1) andg(2) are arbitrary periodic functions of perio
2L. The first-order correction forF can be deduced from th
first-order correction forG that we have just found using Eq
~14! or ~15! interchangeably. We see that the perturbat
corrections contain secular terms that grow linearly in tim
Therefore, the approximation will be valid only for sho
times, that is,et/L!1.

In order to determine the two unknown periodic functio
we have to consider the boundary conditions for the fu
tionsG andF. We have already said that the nonlocal stru
ture of Moore’s equations implies that, although att50 the
motion of the mirrors starts, the expression forG for times
up to t5L is given by the solution for motionless walls
e
.

-
-

namely,G(t)5t/L for t<L, while that for F readsF(t)
5t/L for t<0. If we assume that these boundary conditio
are already satisfied by the zeroth-order solutionsG0(t) and
F0(t), then the periodic functions must be chosen so t
G1(t)50 andF1(t)50 in the respective intervals. This fac
when translated to the functionsG1

(1) andG1
(2) , implies the

following boundary conditions:

G1
~1!~ t !50 for 0<t<2L,

~22!
G1

~2!~ t !50 for 2L<t<L,

which leads to the following expressions for the period
functions:

g~1!@~2k11!L1z#52
AL

L

z1L

L
sin~qpz/L!

3H 11p (
n>1

n

3@An cos~npz/L!2Bn sin~npz/L!#J
~23!

and

g~2!~2pL1v!52
AR

L

w

L

3$sin~f!1~21!q11 sin~qpv/L1f!%

3H 11p (
n>1

n

3@An cos~npv/L!2Bn sin~npv/L!#J ,

~24!

wheret5(2k11)L1z, k50,1,2, . . . , and2L<z<L for
the function g(1), while for the functiong(2) we have t
52pL1v, p50,1,2, . . . , and2L<v<L. Given t, the
values of the integersk and p are obtained ask5p
5 1

2 int(t/L) for int(t/L) even and k5 1
2 @ int(t/L)21#,

p5 1
2 @ int(t/L)11# for int(t/L) odd. Note that during the

first period k50 (p50), the functiong(1) (g(2)) makes
G1

(1) (G1
(2)) vanish identically. As we have already see

since the mirrors were at rest fort,0, we must impose
G(t)5t/L for t<L and F(t)5t/L for t<0. Therefore,c
5An5Bn50, and the perturbative solution fort.0, to order
O(e2), is

G~ t !5
t

L
1e

AL

L

t2z2L

L
sin~qpt/L!1e

AR

L

t2v

L

3@sin~f!1~21!q11sin~qpt/L1f!#, ~25!

F~ t !5G~ t !12e
AL

L
sin~qpt/L!. ~26!
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These perturbative solutions suffer from the aforementio
secularity problems, being valid for timest/L!e21. In or-
der to deal with this drawback and get improved solutio
valid for longer times, in the rest of this section we descr
the RG method we mentioned before for this problem of
oscillating cavity.

What the renormalization-group method does is to i
prove the perturbative expansion by resumming an infin
number of secular terms. In general, if one performs the p
turbative expansion to higher orders, there appear diffe
time scales,et to first order,e2t and e2t2 to second order,
e3t, e3t2, ande3t3 to third order, and so on. The RG tec
nique sums the most secular terms of each order (entn), and
it is therefore valid for timest/L!e22. The way to carry out
the resummation is nicely described in@19# and it basically
consists in introducing an arbitrary timet, splitting the time
in the secular terms of the first-order perturbative correcti
as t5(t2t)1t, and absorbing the terms proportional tot
into the ‘‘bare’’ parameters of the zeroth-order perturbat
solution, thereby becoming ‘‘renormalized.’’ Introducing th
arbitrary time t and splitting t as stated, the perturbativ
solution can be written as

G~ t,t!5c~t!1 (
n>1

@An~t!sin~npt/L!

1Bn~t!cos~npt/L!#1
t2t

L

1e
t2t

L

AL

L
sin~qpt/L!H 11p (

n>1
n

3@An~t!cos~npt/L!2Bn~t!sin~npt/L!#J
1e

t2t

L

AR

L
$sin~f!1~21!q11 sin~qpt/L1f!%

3H 11p (
n>1

n@An~t!cos~npt/L!

2Bn~t!sin~npt/L!#J 1eg~1!~ t,t!1eg~2!~ t,t!,

~27!

where the bare parametersc, An , and Bn have been re-
placed by their renormalized counterpartsc(t), An(t), and
Bn(t). Hereg(1)(t,t) andg(2)(t,t), respectively, denote th
functions g(1)(t) and g(2)(t) with the same replacemen
Note that these functions are no longer periodic due to
RG improvement.

Since the timet is arbitrary, the solution forG should not
depend on it, which implies the following RG equatio
(]G/]t) t50. In our case it consists of three independe
equations

]c~t!

]t
5

1

L
1

2

p
~21!q11b1O~e2!, ~28!
d

s
e
n

-
e
r-
nt

s

e

t

]An~t!

]t
5

2

p
adnq22~21!q11bnBn1un2qu

3@aAun2qu2b sgn~n2q!Bun2qu#2~n1q!

3@aAn1q1bBn1q#1O~e2!, ~29!

]Bn~t!

]t
5

2

p
bdnq12~21!q11bnAn1un2qu

3@a sgn~n2q!Bun2qu1bAun2qu#1~n1q!

3@2aBn1q1bAn1q#1O~e2!, ~30!

where

a[
e

L

p

2 FAL

L
1

AR

L
~21!q11 cos~f!G , ~31!

b[
e

L

p

2

AR

L
~21!q11 sin~f!. ~32!

These parametersa and b play a crucial role because the
determine the behavior of the solutions to the set of gene
ized Moore’s equations. There are four distinct cases.
simplest one is fora5b50, which happens, for example, fo
equal amplitudesAL5AR , zero dephasing, and even fre
quencies. In this case there is no secular behavior at the l
of the perturbative solutions Eqs.~25! and ~26!, which are
then valid also for long times. The energy inside the cav
oscillates around the static Casimir value and there is
motion-induced radiation. A second case isaÞ0 andb50,
which occurs, for example, for equal amplitudes, ze
dephasing, and odd frequencies. In this case secular term
appear in the perturbative solutions and the RG metho
useful for finding the long time behavior, which shows
exponential increase of the energy in the cavity and moti
induced photons. This case will be the subject matter of
next section. A third case isa50 and bÞ0, which takes
place, for example, for a static left mirrorAL50 and dephas-
ing f5p/2. Here there are also secular terms at the per
bative level, and for long times the energy does not gr
exponentially but quadratically, photons also being gen
ated. We shall deal with this case in the Sec. V. Finally,
caseaÞ0 andbÞ0 is similar to the second case in that the
is motion-induced radiation and an exponential increase
the energy. We shall not cover this case in detail, since
expressions for the solutions to Moore’s equations are c
bersome.

Now we solve the RG equations~28!–~30!. The solution
for c is trivial, c(t)5@1/L1(e/L)(AR /L)sin(f)#t1k, with
k a constant to be determined. WritingAn5Ãn2Ã2n and
Bn5B̃n1B̃2n , the new variables satisfy

]Ãm~t!

]t
5

2

p
admq22~21!q11bmB̃m1~m2q!

3@aÃm2q2bB̃m2q#2~m1q!

3@aÃm1q1bB̃m1q#1O~e2!, ~33!
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]B̃m~t!

]t
5

2

p
bdmq12~21!q11bmÃm1~m2q!

3@aB̃m2q1bÃm2q#1~m1q!

3@2aB̃m1q1bÃm1q#1O~e2!. ~34!

The initial conditions for these differential equations a
dictated by the perturbative solutionc(0)5Ãm(0)5B̃m(0)
50. This implies that the constantk is zero. In order to solve
for Ãm and B̃m , we first decouple the equations through t
transformationC̃m5Ãm2 iB̃m and D̃m5Ãm1 iB̃m , and in-
troduce a generating functionalM (s,t)5(msmC̃m(t). It is
easy to see that this functional verifies the following diffe
ential equation:

]M

]t
5

2

p
~a2 ib !sq1@22i ~21!q11bs1~a2 ib !sq11

2~a1 ib !s12q#
]M

]s
, ~35!

with boundary conditionM (s,t50)50. The solution can be
obtained by proposing an ansatzM (s,t)5F@e2ta(s)#
1b(s), whereF@ . . . #,a(s), andb(s) are functions to be
determined. We shall not dwell on the details of finding the
functions, but suffice it to say that the last two are straig
forwardly derived after introducing the ansatz in Eq.~35!,
while the first one is obtained once the initial condition onM
is imposed. The solution reads

M ~s,t!5
2

p
„i ~21!q11qbt2 ln cosh~qat!

2 ln$@11 i ~21!q11~b/a!tanh~qat!#

2~12 ib/a!tanh~qat!sq%…. ~36!

Expanding this solution in powers ofs ~and doing the
same for its complex conjugate!, we get to our final objec-
tive, i.e., the coefficientsÃm andB̃m . The only nonvanishing
coefficients are

Ãm505
1

pq
$22 ln cosh~qat!2 ln@11 i ~b/a!tanh~qat!#

2 ln@12 i ~b/a!tanh~qat!#%, ~37!

B̃m505
i

pq
~21!q11$2iqbt2 ln@11 i ~b/a!tanh~qat!#

1 ln@12 i ~b/a!tanh~qat!#%, ~38!

Ãm5q j5
tanhj~qat!

pq j H ~12 ib/a! j

@11 i ~21!q11~b/a!tanh~qat!# j

1
~11 ib/a! j

@12 i ~21!q11~b/a!tanh~qat!# jJ , ~39!
e
t-

B̃m5q j5
i tanhj~qat!

pq j H ~12 ib/a! j

@11 i ~21!q11~b/a!tanh~qat!# j

2
~11 ib/a! j

@12 i ~21!q11~b/a!tanh~qat!# jJ , ~40!

where j PN. Note that sinceÃm,05B̃m,050, the original
coefficientsAm andBm are equal to theÃm’s and B̃m’s, re-
spectively.

The expressions for the RG-improved coefficients ens
that the solution forG andF does not depend ont. We still
have the freedom to choose the arbitrary timet at will, and
the obvious choice ist5t, since in this way the secula
terms proportional to t2t disappear. Given the RG
improved coefficients, we still have to plug them into E
~27! and perform the necessary summations to finally get
RG-improved solutionsG(t,t) andF(t,t).

For a general dephasing, the resulting expressions
rather lengthy, so in the next two sections we will conce
trate on particular cases. First, we study the case of dep
ing f50, which corresponds to translational modes, a
dephasingf5p, which corresponds to breathing mode
Second, we analyze a case with only one mirror oscillati
similar to the one we studied in@15#, but with a dephasing
f5p/2, which gives qualitatively different results.

IV. TRANSLATIONAL AND BREATHING MODES

In the present section we consider that the cavity
translational modes (f50), or that it has breathing mode
(f5p). For the particular case of equal amplitudesAL
5AR , the former type of motion corresponds to the cav
oscillating as a whole, with its mechanical length kept co
stant~pictorically called an ‘‘electromagnetic shaker’’@20#!,
while in the latter type of motion the mirrors oscillate sym
metrically with respect to the center of the cavity, the m
chanical length changing periodically~an ‘‘antishaker’’!.
Both for translational and breathing modes the express
for the coefficients in Eqs.~37!–~40! simplify considerably
becauseb50, and the summations to get the functionsG and
F are straightforward. Settingt5t in Eq. ~27!, we get the
RG-improved solutions

G~ t,t !5
t

L
2

2

pq
Im ln@11z1~12z!eiqpt/L#1eg~1!~ t,t !

1eg~2!~ t,t !, ~41!

F~ t,t !5G~ t !12e
AL

L

3sin~qpt/L!
2z

11z21~12z2!cos~qpt/L!
,

~42!

where we have definedz[exp@2qat#. The~now nonperiodic!
RG-improved functionsg(1)(t,t) andg(2)(t,t) are
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g~1!~ t,t !52
AL

L

z1L

L

3sin~qpt/L!
2z

11z21~12z2!cos~qpt/L!
,

~43!

g~2!~ t,t !57~21!q11
AR

L

v

L

3sin~qpt/L!
2z

11z21~12z2!cos~qpt/L!
,

~44!

where, in the last formula, the upper sign corresponds tf
50 and the lower sign tof5p. These solutions forG and
F are qualitatively similar to the one we obtained in the ca
for one oscillating wall with zero dephasing@15#. For the
same reasons described in that reference, both RG-impr
nonperiodic functions give negligible corrections toG andF
in the long time limit (e21!t/L!e22). However, they are
crucial for the solution to satisfy the correct boundary co
ditions at short times (t/L!e21).

The energy density inside the cavity is given by Eq.~9! in
terms of derivatives ofG and F. Since these expression
involve second and third derivatives of these functions, a
since there is an initial discontinuity of the velocities of t
mirrors, the energy density will developd-function singulari-
ties that will be infinitely reflected back and forth betwe
the mirrors. In what follows we will ignore thes
singularities.4

The structure of the electromagnetic field within the ca
ity at long times strongly depends on the relation amo
amplitudes, frequencies, and dephasings. If these are
that the coefficienta is equal to zero~remember that for the
motions considered in this section the other coefficientb is
always null!, then there is destructive interference. For eq
amplitudesAL5AR , this takes place for evenq and dephas-
ing f50, or for odd q and dephasingf5p: all RG-
improved coefficientsAn and Bn are null, and there is no
motion-induced radiation enhancement whatsoever. If,
the other hand,aÞ0, then we have constructive interferenc
which, for AL5AR , is maximal for oddq andf50, or for
even q and f50. Radiation enhancement takes place:
electromagnetic shaker and antishaker have ‘‘explos
cocktails’’ at long times. In particular, forq>2, the RG so-
lutions G(t,t) and F(t,t) develop a staircase form. Withi
regions oft between odd multiples ofL, there are a total of
q jumps located at values oft for which the argument of the
logarithm in Eq.~41! vanishes, i.e., cos(qpt/L)561, where
the upper sign corresponds toa.0 and the lower one toa
,0. In Fig. 1 we show the form of the functionsG andF for
short times and in Fig. 2 for long times. Note that in the lo
time limit they are practically the same.

4These singularities are, of course, artifacts of the sudden app
mation we are using to describe the motion of the mirrors att50.
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The energy density builds up a number ofq traveling
wave packets which become narrower as exp(22quaut) and
higher as exp(4quaut), so that the total energy inside the ca
ity grows like exp(2quaut) at the expense of the energ
pumped into the system to keep the mirrors moving as p
determined. In Fig. 3 the profile of the energy density ins
the cavity at a fixed time is depicted. We compare the cas
the shaker with that of a single oscillating mirror. The d
ference in height and width of the peaks between these
situations is due to the fact that the parametera for the
shaker is twice that of the single mirror. This reflects how t
cavity can enhance vacuum radiation.

A rather different picture appears when one considers
q51 case, which corresponds to an oscillation frequen

xi-

FIG. 1. G(t) andF(t) vs t/L as given by Eqs.~41! and~42! for
small timesquaut/L!1. Note that the functionF(t) departs from
the straight line att50, while the functionG(t) departs from it at
t5L, as dictated by the initial boundary conditions. The parame
are those for a shaker withAL /L5AR /L51, q53,f50, ande
50.03.

FIG. 2. G(t) andF(t) vs t/L as given by Eqs.~41! and~42! for
long timesquaut/L@1. At these times both functions coincide an
take a staircase profile. The parameters are the same as in Fig
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equal to the lowest eigenfrequency of the cavity. In this c
the energy does not grow exponentially, but oscillates aro
the static Casimir value.

Now we calculate the number of motion-induced photo
inside the cavity. We assume that before the mirrors sta
to move the state of the field was vacuum, and that at t
t5T, when both walls come once again to rest,5 we define a
new vacuum, in which there is an amount of real photo
given by the Bogoliubov coefficients Eq.~10!. To calculate
these coefficients at a timet.T we need to know the form
for the functionsG andF in the corresponding time interval
as they appear in the integral expression Eq.~10!.

To this end let us discuss briefly how the RG-improv
solutionsG(t,t) andF(t,t) match the solutions to the prob
lem of motionless walls fort.T. The nonlocal structure o
Moore’s equation implies that the solution forF(t) is the RG
one F(t,t) up to t<T, and that forG(t) is the RG one
G(t,t) up to t<T1L. Also, evaluating the Moore equatio
for timest>T, it follows thatF(t)5G(t) for t>T. Finally,
for t>T1L both Moore equations can be combined to o
tain the usual equation for a static cavity, soG(t)5F(t)
5t/L1D(t), whereD(t) is a 2L-periodic function that we
must determine. If due care is taken of the boundary con
tions at the moment when the walls stop, it is easy to see
this function can be written by periodizing the RG-improv
functionsG(t,t) andF(t,t) as follows:

D~ t5T12L1z!5H F~T1z,T1z! for 2L<z<0,

G~T1z,T1z! for 0<z<L,
~45!

andD(t)5D(t12L).

5For the motionsL(t) andR(t) we are considering in this section
this happens for timesT such thatT/L52k/q, (kPN).

FIG. 3. Energy density profile between plates for fixed tim
t/L515.4. The solid line corresponds to a shaker withAL /L
5AR /L51, q53, f50, and e50.01. The dashed line corre
sponds to a cavity with a single oscillating mirror (AL50) with the
same parameters. Note that the height of the peaks for the sh
grows as exp(4pqet/L), while that for the single mirror grows a
exp(2pqet/L).
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Having now the form of the solutions for times after th
stopping of the walls, we can calculate the Bogoliubov co
ficients for late timest/L.T/L@e21 in a manner similar to
that of @12#. Let us split the solutionG(t) in Eq. ~41! in the
form G(t)5Gs(t)1Gnp(t), where the first part isGs(t)
5t/L22/(pq)Im ln@11z1(12z)eiqpt/L# and the last part in-
volves the RG-improved functionsg(1) and g(2). From a
graph of these nonperiodic functions and of the differen
betweenG(t) andF(t) one can see that, for long times, the
are all bounded, much smaller thanGs , and that they are
effectively zero except in small time intervals which tend
zero as time increases. Therefore, we can drop their co
bution in the imaginary exponents of the integral represen
tion of the Bogoliubov coefficient, and get

bnm~ t,T!5
1

2
Am

n Et/L21

t/L11

dx exp$2 ip@nGs~Lx!1mx#%.

~46!

The functionGs has a first term, linear in time, and a seco
one, which for late times becomes an oscillating function,
period being 2L/q and the amplitude of its oscillations bein
independent ofe. Then the Bogoliubov coefficient can b
rewritten as follows:6

bnm~ t,T!5
1

2
Am

n
e2 ip~n1m!~ t/L21! (

k50

q21

e2 ip~n1m!~2/q!k

3E
0

2/q

dxe2 ip[ ~n1m!x1n f~x!] , ~47!

with f (x)522/(qp)Im ln@11z1(12z)exp(iqpx)#, and z
5exp(2qaT). To go further and to be able to perform th
integral, we make a piecewiese linear approximation for
function f, valid for late times. We concentrate on the ca
a,0, for whichz→0 at late times.7 From the graph off (x)
one can see that it can be approximated by

f̃ ~x!55
2~12qd!x for 0<x<

1

q
2d,

2
1

qd
~12qd!2S x2

1

qD for
1

q
2d<x<

1

q
1d,

2~12qd!S x2
2

qD for
1

q
1d<x<

2

q
,

~48!

whered52Az/(qp). With this approximate form the inte
grals become trivial, and after neglecting the integral o
the middle interval which is proportional tod, one can get a
closed expression for the Bogoliubov coefficient, valid f
md!1. For the particular caseq52 we get

6As we have anticipated, the dependence of the Bogoliubov c
ficient on the timet.T is just a phase.

7The casea.0 gives similar results for the amount of create
particles. The technical difference is that sincez→` for late times,
the approximate function is different.

ker
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ubnm~T!u25
m

np2
@11~21!m1n#

12~21!m cos~2pnd!

~m12pnd!2
.

~49!

Next we need to calculate the sum overn in order to find the
amount of motion-induced photons in thenth mode after the
stopping timeT. Using the summation formulas of@12# we
get

Nm~T!5
1

m2F lnS m

2d D2~21!m lnS 1

2pd D G . ~50!

Recalling thatd is a function ofT and taking theT derivative
we find the rate of photoproduction

dNm~T!

dT
52

2a

mp2
@12~21!m#. ~51!

These results are valid foreT/L@1 and not for very large
wave numbersmd!1.8 The number of photons per mod
grows linearly in the stopping time and the rate, for la
times, approaches an asymptotic value that depends on
value ofa, i.e., on the relation among amplitudes, frequen
and dephasing. Both for the shaker and the antisha
motion-induced radiation is enhanced in comparison to
case of a single oscillating mirror in a cavity. Indeed, in t
former cases the rate of photoproduction is twice that of
f

e

o
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th

at
ct

io

ar
t

be
the
,
r,
e

e

latter case. Photons are created in the odd modes o
whereas their amount in even modes is zero~it may be dif-
ferent from zero in the next-to-leading-order approximatio!.
This situation is typical of processes involving paramet
excitations@12#.

V. A DEPHASED OSCILLATING BOUNDARY

In this section we discuss another particular motion of
walls, namely one for which the left mirror is static and th
right one oscillates resonantly, with a dephasingf5p/2.
The motion we consider is then R(t)5L
22eAR sin2(qpt/2L), which for q52 corresponds to the
small e expansion of an exact solution to Moore’s equati
studied in@8#. Our motivation for studying this peculiar cas
is that for this motion we havea50 andbÞ0, which, as we
have anticipated, gives qualitatively different physical r
sults.

The expressions for the functionsG(t,t) and F(t,t) are
obtained taking the limita→0 of Eqs.~37!–~40!. The result
is

G~ t,t !5F~ t,t !5
t

Leff
2

2

pq
Im lnF12

iqbteiqpt/L

12 i ~21!q11qbt
G

1eg~2!~ t,t !, ~52!

g~1!~ t,t !50, ~53!
g~2!~ t,t !52
AR

L

11~21!q11 cos~qpt/L!

112qbt sin~qpt/L!12~qbt!2@11~21!q11 cos~qpt/L!#
, ~54!
o-

ting

q.
where Leff5L(12eAR /L) is the time-averaged length o
the cavity fort.0.

The solution G(t,t) develops a staircase profile, th
jumps being located at values oft for which the argument of
the logarithm in Eq.~52! vanishes, i.e., for cos(qpt/L)5
61, where the plus sign corresponds to evenq and the minus
sign to oddq. The energy density for this type of motion als
consists of a series ofq peaks that travel between the mirror
The qualitative difference is that in this case the height of
peaks grows as (qbt)4, their width decreases as (qbt)22,
and the total energy contained in the cavity grows quadr
cally rather than exponentially. This follows from the fa
that time enters into the logarithm of Eq.~52! as a power law
instead of an exponential, as in Eqs.~41! and ~42!.

Next we calculate the amount of motion-induced radiat
for this case. To this end we assume that at timet5T the
wall comes to rest,R(t)5Leff for t>T, whereT is of the

8There is a further restriction that comes from the fact that we
using a sudden approximation for the motion of the mirrors at
50 andt5T. Indeed, if we assume thatts is the characteristic time
for the mirror to come to rest, the sudden approximation will
valid for modes such thatm!L/ts .
e

i-

n

form T/L5(2k11)/(2q)(kPN). This choice for the stop-
ping time simplifies the computation of the Bogoliubov c
efficientsbnm . In such a case Eq.~46! is slightly modified,

bnm~ t,T!5
1

2
Am

n Et/Leff21

t/Leff11

dx

3exp$2 ip@nGs~Leffx!1mx#%. ~55!

Now Gs consists of the first two terms of Eq.~52!, the first
being linear in time and the second one being an oscilla
function for late times, whose period is 2L/q. The Bogoliu-
bov coefficient can also be rewritten in a way similar to E
~47!,

bnm~ t,T!5
1

2
Am

n
e2 ip~n1m!~ t/Leff21! (

k50

q21

e2 ip~n1m!~2/q!k

3E
0

2/q

dxe2 ip[ ~n1m!x1n f~x!] , ~56!

since in the interval@ t/Leff21,t/Leff11# there are a total of
q(Leff /L)'q periods. Here

e
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f ~x!52
2

pq
Im lnF12

iqbLeffxeiqpxLeff /L

12 i ~21!q11qbLeffx
G . ~57!

The piecewise linear approximation for the functionf is in
this case9

f̃ ~x!5H S 2

qd
2

5

2D x2
1

q
for 0<x<d,

2S 12
3

4
qd D S x2

2

qD2
1

q
for d<x<

2

q
,

~58!

whered5@qp(qbT)2#21!1 for late times. Now the inte-
gral in Eq. ~56! is straightforward, and after dropping th
integral over the first interval@0,d#, which is proportional to
d, one can get a closed expression for the Bogoliubov co
ficients, valid as long asmd!1. For comparison with@8# we
concentrate on the caseq52. In this case we have

ubnm~T!u25
2m

np2
@11~21!m1n#

12~21!m cos~3pnd/2!

~m13pnd/2!2
.

~59!

Finally, we perform the summation overn to get the number
of created photons in thenth mode. Using the same summ
tion formulas as in@12#, we get

Nm~T!5
2

mp2F lnS 2m

3d D2~21!m lnS 2

3pd D G . ~60!

Replacing the value ford and taking theT derivative, we get
the following formula for the rate of photon productio
valid in the limitsmd!1 andeT/L@1:

dNm~T!

dT
5

4

mp2
@12~21!m#

1

T
. ~61!

9We concentrate on even frequencies, for whichb,0. For odd
frequencies, the results are similar.
et

A

f-

We see that the number of photons per mode grows loga
mically in the stopping time, and as a consequence the
of photon creation decreases towards zero. Similarly to
case of the vibrating cavity, photons are produced only
odd modes.

VI. CONCLUSIONS

In this paper we have presented a unified and anal
treatment of the dynamical Casimir effect in a on
dimensional resonantly oscillating cavity for arbitrary amp
tudes and dephasings. We have derived a generalizatio
Moore’s equation to describe the state of the electromagn
field inside the cavity with two moving mirrors. Using
technique inspired by the renormalization-group method,
have found a solution to the set of generalized Moore’s eq
tions which is valid both for short and long times. The phy
cal behavior of the moving cavity depends crucially on t
relation among amplitudes, frequency, and dephasing.
have shown that for certain cases there is destructive in
ference and no radiation is generated. For others, ther
constructive interference and motion-induced photons
pear. When this takes place, the way the energy within
cavity and the number of created photons grow in time
pends on the relation among the above variables. For ce
motions the growth of the energy density is exponential a
for some others it is a power law.

We hope in the future to apply the RG method to mo
realistic situations, such as three-dimensional oscillat
cavities with rectangular or spherical shapes.

Note added.Recently, we received a paper@21# in which
the problem of photon creation in a cavity with two movin
mirrors is analyzed using a different method. It is shown t
if the frequency of the vibrations is not exactly a resona
one, photoproduction is highly suppressed for strong det
ing.
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